首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51074篇
  免费   4215篇
  国内免费   5421篇
  2023年   1008篇
  2022年   1062篇
  2021年   1774篇
  2020年   1771篇
  2019年   2278篇
  2018年   1960篇
  2017年   1698篇
  2016年   1654篇
  2015年   1763篇
  2014年   2663篇
  2013年   3404篇
  2012年   2144篇
  2011年   2260篇
  2010年   1882篇
  2009年   2437篇
  2008年   2457篇
  2007年   2635篇
  2006年   2252篇
  2005年   2116篇
  2004年   1848篇
  2003年   1772篇
  2002年   1574篇
  2001年   1199篇
  2000年   1090篇
  1999年   979篇
  1998年   886篇
  1997年   784篇
  1996年   729篇
  1995年   727篇
  1994年   722篇
  1993年   675篇
  1992年   600篇
  1991年   600篇
  1990年   494篇
  1989年   479篇
  1988年   469篇
  1987年   389篇
  1986年   388篇
  1985年   599篇
  1984年   724篇
  1983年   409篇
  1982年   536篇
  1981年   536篇
  1980年   460篇
  1979年   338篇
  1978年   261篇
  1977年   277篇
  1976年   240篇
  1975年   166篇
  1973年   183篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
目的:探讨踝肱指数(ABI)与糖尿病周围神经病变及中医证候积分的相关性。方法:选取我院内分泌科收治辩证以气阴两虚 为证型的糖尿病患者66 例,根据踝肱指数实验将患者分为ABI降低组(0.9>ABI>0.5)和ABI 正常组(1.4>ABI>0.9)。记录患者神 经病变症状尼龙丝检查以及中医症候评分,分析ABI与糖尿病周围神经病变及中医证候积分的相关性。结果:ABI降低组的糖尿 病周围神经病变的患病率高于ABI正常组(P<0.05)。ABI 降低组发麻、针刺感症状的发生率高于ABI 正常组,且有统计学差异 (P<0.05)。ABI降低组10 g尼龙丝检查异常者多于ABI正常组,差异显著(P<0.05)。ABI降低组的感觉振动阈值高于ABI正常组 (P<0.05)。ABI数值与中医证候积分呈负向直线相关(P<0.05)。结论:糖尿病患者ABI数值与糖尿病周围神经病变和中医证候积 分具有相关性。  相似文献   
2.
目的:探讨癌基因Src在体外培养骨肉瘤细胞侵袭伪足形成中的作用。方法:构建Src sh RNA慢病毒表达载体,在HEK293T细胞中包装慢病毒,感染HT-1080骨肉瘤细胞,经嘌呤霉素加压筛选,获得稳定沉默Src基因的骨肉瘤细胞系HT-1080-sh Src;实时定量PCR和Western Blot法检测基因沉默效率;采用原位明胶酶谱法检测侵袭伪足形成;采用侵袭小室实验检测下调Src基因表达对HT-1080细胞侵袭力的影响。结果:成功构建稳定沉默Src基因的骨肉瘤细胞系HT-1080-sh Src及对照细胞系HT-1080-shluc,经实时定量PCR和Western Blot检测,与对照细胞系相比,HT-1080-sh Src细胞中Src基因表达下调3倍以上;下调HT-1080细胞中Src基因表达能显著抑制HT-1080细胞侵袭伪足形成及其对细胞外基质的降解能力;下调Src基因表达能显著抑制骨肉瘤细胞侵袭力。结论:癌基因Src参与调节骨肉瘤细胞HT-1080侵袭伪足形成,促进肿瘤侵袭、转移。  相似文献   
3.
4.
Lu Chen  Shuqiang Li  Zhe Zhao 《ZooKeys》2015,(541):41-56
One new genus of the spider subfamily Coelotinae, Flexicoelotes gen. n., with five new species is described from southern China: Flexicoelotes huyunensis sp. n. (female), Flexicoelotes jiaohanyanensis sp. n. (male and female), Flexicoelotes jinlongyanensis sp. n. (male and female), Flexicoelotes pingzhaiensis sp. n. (female), Flexicoelotes xingwangensis sp. n. (male and female).  相似文献   
5.
The aim of our study was to investigate the appearance, density and distribution of ghrelin cells and GHS-R1a and GHS-R1b in the human stomach and duodenum during prenatal and early postnatal development. We examined chromogranin-A and ghrelin cells in duodenum, and GHS-R1a and GHS-R1b expression in stomach and duodenum by immunohistochemistry in embryos, fetuses, and infants. Chromogranin-A and ghrelin cells were identified in the duodenum at weeks 10 and 11 of gestation. Ghrelin cells were detected individually or clustered within the base of duodenal crypts and villi during the first trimester, while they were presented separately within the basal and apical parts of crypts and villi during the second and third trimesters. Ghrelin cells were the most numerous during the first (∼11%) and third (∼10%) trimesters of gestation development. GHS-R1a and GHS-R1b were detected at 11 and 16 weeks of gestation, showed the highest level of expression in Brunner's gland and in lower parts of duodenal crypts and villi during the second trimester in antrum, and during the third trimester in corpus and duodenum. Our findings demonstrated for the first time abundant duodenal expression of ghrelin cells and ghrelin receptors during human prenatal development indicating a role of ghrelin in the regulation of growth and differentiation of human gastrointestinal tract.  相似文献   
6.
The main goal of our research was to study comprehensively the differences between the two phenological forms of the socially parasitic and globally threatened Large Blue (Maculinea arion) in the Carpathian Basin using four character sets (mitochondrial sequences, allozymes, male genitalia and wing morphometrics). Comparative analyses of distance matrices, phylogenetic trees and ordination patterns have been applied. The genetic and morphometric patterns revealed by our studies were discordant. While we experienced a significant differentiation between the ‘spring’ and ‘summer type’ of M. arion in both wing and genital traits, the two phenological forms did not show any genetic differentiation on two mitochondrial loci and in allozymes. At the same time, all individuals were infected by Wolbachia. Although certain wing traits may not represent reliable tracers of phylogeny because of the particular adaptive significance, the wing characteristics involved in our research are probably determined genetically. Additionally, the significant differentiation of male genitalia also indicates incipient prezygotic isolation arising from phenological differentiation between the ‘spring and summer arion’. It is possible that all extant differences between the two forms are attributable to (1) different host‐ant use, (2) incipient speciation, (3) cytoplasmatic incompatibility (CI) by Wolbachia or the combination of these factors. In addition, discordant results indicate that the combined use of different approaches and data sets is strictly necessary to clarify systematic and evolutionary relationships.  相似文献   
7.
Abstract: The turnover of a CNS-specific cell adhesion glycoprotein, ependymin, has earlier been found to increase during periods of neuronal plasticity. Here, ependymin mRNA expression was analyzed by semiquantitative in situ hybridization in goldfish. Learning of an active avoidance response resulted in a significant increase in ependymin mRNA expression 20 min to 4 h after acquisition of the task. In contrast, yoked control animals that were exposed to the same numbers of conditioned and unconditioned stimuli in a random, unpaired manner exhibited a strong down-regulation of ependymin mRNA. Hybridization signals were also increased by injection of anti-ependymin antiserum into brain ventricles. Ependymin mRNA was exclusively localized to reticular-shaped fibroblasts of the inner endomeningeal cell layer. Immunoelectron microscopic investigation, however, revealed ependymin also in distinct neuronal and glial cell populations in which no ependymin mRNA had been detected. Uptake of meningeal protein factors into glial and neuronal cells may therefore be of functional importance for plastic adaptations of the CNS.  相似文献   
8.
9.
The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation‐resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation – an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life‐history patterns – suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm‐producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency‐dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re‐invention of anisogamy within the context of a sporophyte‐dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate‐encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re‐establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation.  相似文献   
10.
Understanding the patterns of genetic variations within fertility‐related genes and the evolutionary forces that shape such variations is crucial in predicting the fitness landscapes of subsequent generations. This study reports distinct evolutionary features of two differentially expressed mammalian proteins [CaMKIV (Ca2+/calmodulin‐dependent protein kinase IV) and CaS (calspermin)] that are encoded by a single gene, CAMK4. The multifunctional CaMKIV, which is expressed in multiple tissues including testis and ovary, is evolving at a relatively low rate (0.46–0.64 × 10?9 nucleotide substitutions/site/year), whereas the testis‐specific CaS gene, which is predominantly expressed in post‐meiotic cells, evolves at least three to four times faster (1.48–1.98 × 10?9 substitutions/site/year). Concomitantly, maximum‐likelihood‐based selection analyses revealed that the ubiquitously expressed CaMKIV is constrained by intense purifying selection and, therefore, remained functionally highly conserved throughout the mammalian evolution, whereas the testis‐specific CaS gene is under strong positive selection. The substitution rates of different mammalian lineages within both genes are positively correlated with GC content, indicating the possible influence of GC‐biased gene conversion on the estimated substitution rates. The observation of such unusually high GC content of the CaS gene (≈74%), particularly in the lineage that comprises the bovine species, suggests the possible role of GC‐biased gene conversion in the evolution of CaS that mimics positive selection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号